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Abstract--The origin of solitary waves on gas-liquid sheared layers is studied by comparing the behavior 
of the wave field at sufficiently low liquid Reynolds number, RL, where solitary waves are observed to 
form, to measurements at higher RL where solitary waves do not occur. Observations of the wave field 
with high-speed video imaging suggest that solitary waves, which appear as a secondary transition of the 
stratified gas-liquid interface, emanate from existing dominant waves, but that not all dominant waves 
are transformed. From measurements of interface tracings it is found that for low RL, waves which have 
amplitude/substrate depth (a/h) ratios of 0.5-1 occur while for higher R L, no such waves are observed. 
A comparison of amplitude/wavelength ratios shows no distinction for different R L. Consequently, it is 
conjectured that solitary waves originate from waves with sufficiently large a/h ratios; this change of form 
being similar to wave breaking. The dimensionless wavenumber is found to be smaller at low R L, where 
solitary waves are observed. This suggests that perhaps, larger precursor (to solitary wave) waves are 
possible because the degree of dispersion, which acts to break waves into separate modes, is lower. 
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1. I N T R O D U C T I O N  

Interfacial waves have been shown to play an important  role in determining the pressure drop 
(Laurinat & Hanra t ty  1984) and the rate of  atomization (Woodmansee & Hanra t ty  1969; 
Asali et al. 1985; Schadel & Hanra t ty  1989), which are both important  properties of  annular 
gas-liquid flows. Consequently, it is desirable to be able to estimate wave properties to interpret 
experimental measurements for the design of  new equipment. However, general procedures for 
predicting wave properties for cocurrent annular flows do not exist--primari ly owing to the 
difficulty and complexity of  the problem. For  example, because of  the high degree of  gas shear, 
the liquid flows at conditions which greatly exceed the point of  neutral stability of  interfacial waves. 
As a consequence, waves that are present are not small amplitude, periodic waves (as would be 
expected close to neutral stability) and therefore do not match predictions of  wavelength and 
celerity from linear stability theory. Experiments indicate that these waves may be quite 
asymmetric, occur irregularly and carry significant l iquid--which alters the base state so that the 
substrate liquid thickness is very different from that which would exist in the absence of  waves. 

Previous studies of  waves in horizontal cocurrent gas-liquid flows by Hanra t ty  & Engen (1957) 
and Hanra t ty  & Hershman (1961) demonstrated that a transition from periodic waves, to "rol l"  
or "disturbance" waves (which carry significant fluid with them and are not periodic), occurs as 
the gas flow is increased to produce interfacial shear rates typical of  the annular flow regime. 
Subsequent studies by Miya et al. (1971) and Andreussi et al. (1985) have defined boundaries of  
their occurrence and attempted to explain their origin in terms of  linear stability theory. Bruno 
& McCready (1988) provide measurements which suggest that for sufficiently high liquid Reynolds 
number  R E = F/v; where F is the liquid volumetric flow per unit width and v is the kinematic 
viscosity), roll waves emanate from slowly growing waves which have frequencies much lower than 
the dominant  interfacial waves. For  lower R E ,  their data suggest that roll waves form by the growth 
of  waves near the peak of  the spectrum. For  liquids with viscosities in the range of  15 cP, Jurman 
& McCready (1989) observed that the dominant  waves at low R E (i.e. 5-10) changed from periodic 
to "soli tary" as RG (the gas Reynolds number) was increased. Jurman et al. (1989) speculate that 
these solitary waves are essentially the same as roll waves except that the interface is continuous 
and is not breaking or rolling. However, these studies do not resolve the issue of  what controls 
the periodic to solitary transition or determine why solitary waves are observed only at low R E . 
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In this paper, the behavior of waves as a function of interfacial shear is examined for liquids 
of 8-30 cP viscosity at liquid flows low enough for solitary waves to form and also for RL too large 
for solitary waves formation. Measurements demonstrate that a transition to solitary waves occurs 
if the ratio of the wave amplitude to substrate thickness (a/h) of the largest waves approaches unity 
and that these solitary waves form directly from existing precursor waves. Indirect evidence 
suggests that this transition does not depend on any qualitative changes in the gas flow, such as 
separation. If the liquid layer is too thick, no waves with large a/h ratios are observed and this 
transition never occurs. The pertinent question is thus, why do large a/h waves exist for thin layers 
but not for larger layers? Some evidence suggests that waves on thinner layers have lower 
wavenumbers and may be less dispersive. It is spectulated that the degree of dispersion, which acts 
to break up nonsinuous waves, influences how large the amplitude to substrate depth is likely to 
be and therefore determines if sufficiently large precursor waves will appear. 

2. EXPERIMENTS 

(a) Flow system 

The experiments presented here were done in a horizontal, rectangular flow channel 30 cm wide, 
2.54 cm high and 9 m long. [The flow system is described more completely by Bruno & McCready 
(1988), Bruno (1988) and Jurman (1990)]. Glycerin-water solutions with viscosities ranging from 
8 to 30 cP were used as the liquid. The high aspect ratio rectangular geometry eliminates secondary 
flow patterns and minimizes side wall effects on the wave field, thus providing (in so far as possible) 
uniform film and wave properties. 

(b) Wave measurements 

Instantaneous film height is measured using parallel-wire conductance probes. Their construction 
is discussed in detail by Miya et al. (1971), McCready (1986) and Bruno (1988). Each probe consists 
of two parallel 0.13 mm dia wires spaced 2 mm apart which extend vertically through the channel, 
perpendicular to the direction of flow. An input a.c. voltage is supplied to one of the two wires 
in the form of a 30 kHz sine wave with a voltage of about 0.2 V. The signal is conducted through 
the liquid to the second wire, where a custom design amplifier/converter circuit measures the 
conducting current (which is directly proportional to liquid layer thickness) and transforms it into 
a continuous analog output which is suitable for sampling by a microcomputer. A complete 
diagram of this circuit, which worked significantly better than previous designs, is given by Jurman 
(1990). An analog-to-digital conversion rate of 200 samples/s was used. This is appropriate for the 
conditions studied here where no significant wave frequencies >~ 50 Hz were observed. Power 
spectra of the signals were obtained from samples of ~ 32,000 data points using FFT techniques 
described by Bendat & Piersol (1971). 

Wave speeds were measured using two parallel-wire conductance probes (Telles & Dukler 1970), 
displaced by a small distance in the flow direction. The frequency resolution of such probes is 
determined by the separation distance. Larger separation distances are required to detect and track 
the longest disturbances, while the highest frequency is effectively determined by a wave whose 
length equals the separation distance. Therefore, a larger separation distance, z, for the probe 
increases its ability to resolve the lower frequency modes, but decreases its upper frequency limit. 
The probes used in this study allow resolution of wave speeds in the approximate range of 3-30 Hz 
for z = 1.55 cm, and 5-50 Hz for z = 0.55 cm. Speeds for individual waves can be determined from 
examining the time delay between the two tracings. Average wave speeds for different modes are 
obtained by cross-spectral analysis. 

(c) Video imaging 
The wavefield was viewed using an Ekta-Pro 1000 motion analysis system. The camera was 

operated at up to 500 frame/s and the resulting tapes viewed at 30 frame/s or sometimes by 
manually advancing the frames. This arrangement provided clear images of the evolving flow field 
with enough resolution to discern individual events. 
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3. E X P E R I M E N T A L  RES U LTS  

(a) Video imaging 

It is of  interest first to describe, as well as possible, results that were obtained from viewing the 
wave field with a high-speed video imaging camera. Presentation of  individual frames here is not 
deemed worthwhile because it would take too many pictures to depict any one event. The wave 
field was viewed at steady-state conditions and also when the gas flow was increased from zero 
sufficiently to form solitary waves. Pictures of steady flows revealed that solitary waves often travel 
for long distances (several feet) catching up to smaller periodic waves and leaving a smooth film 
behind them on which periodic waves reform [figure 10 in Jurman et al. (1989) suggests this]. 
Solitary waves were observed to form only infrequently, but when they did, they appeared to come 
from an existing wave. One additional observation from video imaging was that solitary waves 
which do not span the entire channel width, often would pass other waves which do not span the 
entire channel and "stick" together at the edges of  their fronts to form a wave front which spanned 
a greater fraction of  the channel width. This observation is important because it explains how 
solitary waves which span most of  the channel distance can exist [see figure 10 in Jurman et al. 
(1989)] when none of  the precursor 3D waves from which solitary waves could form, have 
continuous fronts much wider than ~ 1/3 of  the channel. 

When the gas flow was quickly increased ( ~  I/2 s for zero to full flow), the entire formation 
process of  a solitary wave could be observed. First, periodic waves with a wavelength of  about 2 cm 
formed, their amplitudes increased and then a fraction of  those in the field of  view formed into 
solitary waves. From these video tapes, it is concluded that solitary waves form by continued 
growth of  existing periodic waves--which themselves form as the result of  a linear instability of  
the base film (which may actually be much thinner than the "average" layer thickness). However, 
not all periodic waves grow into solitary waves. It is further surmised that it is the largest waves 
which are the ones that form solitary waves. Other experiments, which were done to gain further 
evidence to support these hypotheses, are presented next. 

(b) Wave regime maps 

Figure 1 shows maps which were constructed using visual observations of  the dominant wave 
type for 8, 15 and 30 cP liquids. Our primary interest here is solitary waves, which are observed 
to exist for the low RL region of each of  the three plots at sufficiently high RG. It is worthwhile 
to point out several important features which will be discussed further below. First, it is clear that 
R L and RG are not sufficient to completely parameterize the system because the wave map 
boundaries move with changes in viscosity. Second, the transition from 3D to solitary waves occurs 
at lower RG for higher viscosity liquids. Third, solitary waves are confined to low RL. A final point 
about the wave maps is that over the range studied, there is no qualitative change in any of  the 
transitions with viscosity. 

(c) Surface tracings and wave spectra 

The maps of  figure 1 suggest that it is appropriate to examine wave behavior as a function of  
R6 for RL low enough to allow formation of solitary waves, and RL tOO large for this to occur. 
This procedure will enable comparison of wave behavior leading to the formation of  solitary waves 
with conditions where solitary waves do not form. Figure 2 shows interface tracings for # = 15 cP 
and RL -- 10 as a function of  R6. At the lowest RG, waves are sinuous, do not vary much in the 
transverse direction, but are irregular in amplitude and frequency. The next plot shows a much 
more uneven surface with a wider range of frequencies present. These data are for 3D waves, so 
it is noted that a great deal of  the irregularity results from a ID measurement of  a wave field which 
varies in the transverse direction. As a consequence, the probe measures waves with fronts which 
are not perpendicular to the flow. The fourth tracing is just below the visible transition to solitary 
waves; it suggests that there may actually be a few solitary waves present (e.g. at t = 1.2 s). When 
viewed in a surface tracing, a solitary wave is asymmetric with a front side that is steeper than the 
backside and, in addition, the backside is clearly concave-upward. At RG = 16, 400, solitary waves 
are observed at t = 0.15, 0.4, 0.6, 0.7, 1.0, 1.25 and 1.5 s. The rate of  solitary waves occurrence 
continues to increase with RG with solitary waves occurring with rather irregular time intervals at 
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Figure 1. Wave regime maps. 
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Figure  2. Surface t racings as a funct ion o f  R o for R L = 10 and  # = 15 cP. 

approx. 5-10/s. It is also interesting to note that a large decrease in the layer depth occurs with 
the average thickness decreasing from 0.5 to ,,~ 0.2 cm; the substrate thickness is even lower. 

The corresponding power spectra are shown in figure 3. As R c increases, the amplitude increases 
and then reaches a limiting value at about R~ = 14,400, after which it decreases slightly. It is noted 
that this decrease is due to a reduction of the average liquid thickness because the ratio of average 
wave amplitude to average liquid thickness continues to increase with Rc. It is clear that the wave 
spectra do not reflect the regime transitions very well. There is no qualitative change for the 2D 
to 3D periodic wave transition. The peak at 5 Hz for R~ = 16,400, is probably associated with the 
occurrence of solitary waves because they appear in the tracings at about 5/s. However, 
RG = 17,820 shows no distinct peak even though solitary waves are occurring more frequently. It 
is not surprising that spectral analysis is not particularly informative because a large number of 
Fourier modes are needed to make the shape of a solitary wave. In addition, solitary waves do 
not occur periodically. 

Experiments corresponding to figures 2 and 3 for R L ---47 are shown in figures 4 and 5. The 
tracings in figure 4 again increase in irregularity and amplitude with increasing RG- However, the 
characteristic solitary wave shapes do not appear. The wave spectra in figure 5 increase in 
magnitude with increasing R<~ and then saturate with little change evident in the last three RG. As 
for Re = 10, the decrease in layer depth counteracts the increase in interfacial shear. The spectra 

UMF 17/~-F 



772 C.-A.  P E N G  e taL  

/ I --R~ =9~s6 I /  

~o 3 

t. 

: i 

• X " , , . , , ,  , 

o t.. . . . . .  ¢, I " -~  . . . . . . . . .  ~ ~  
o s ~o ~s 20 25 30 

~o 3 
)< 

(/) 

t 

v 

2 

5 - 

0 5 10 15 

f (Hz) f (Hz) 

Figu re  3. In te r fac ia l  wave  spect ra ;  R L = 10 a n d  # = 15 cP. 

......... R G = 14400] 
- -  R G = 16406 I 
. . . .  R G = 17824~ 

20 25 30 

show the emergence of a distinct low frequency peak which is not present in figure 3. (It is possible 
to detect the presence of this low frequency oscillation in the baseline of the tracings.) Bruno & 
McCready (1988) observed such a peak for conditions which were not quite severe enough for roll 
waves to form. One further point of comparison between the two different RL is of interest. The 
wave amplitudes, which are proportional to the square root of the area under the spectral curves, 
are actually somewhat smaller for R L --47 (than R L = 10) at higher RG even though the film 
thickness is higher. 

(d) Wave amplitudes 
The data of figures 2-5 do not directly show how, or from what, solitary waves form. Because 

of the conjecture that solitary waves form from the largest existing waves, the wave tracings were 
examined to identity the largest amplitude waves. This was done by first finding the peaks and then 
looking for the level of the minima before and after the wave. It was found that, typically, the 
amplitudes of the largest waves were comparable for both higher and lower RL. However, to 
compare the different RL conditions, it is necessary to nondimensionalize the amplitudes. The 
amplitudes were first nondimensionalized with their wavelengths. To determine the wavelength, it 
is necessary to determine the time delay of a given wave between the two probes, and also observe 
the period of the wave. Because we were not able to develop a reliable automated procedure (i.e. 
computer algorithm) for doing both of these tasks, the wavelengths were obtained by visually 
examining the data sets and counting points between the peaks. As this was very time consuming, 
only the 6 or 7 largest waves at any condition were chosen. Data for the amplitude/wavelength 
(a/2) ratios for the largest individual waves for a 15 cP liquid are shown in figure 6. It is seen that 
for both values of RL, the largest waves have a/k ratios in the range 0.1-0.15 but that there is no 
difference for the two cases. It is next of interest to determine the ratio of amplitude to substrate 
thickness. The local substrate thickness, h, was obtained from averaging several data points in front 
of and behind a selected wave. This information could be obtained from the tracing of a single 
probe and it was possible to reliably code a procedure for finding the waves, and then determining 
the substrate thickness by averaging several points on both sides of the peak. The a/h ratios, plotted 
as 2 a/h vs R G for three different liquid viscosities in figure 7 using the 10% largest waves (with 
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Figure 4. Surface tracings as a function of  1 ~  for R L = 47 and # = 15 cP. 

the error bars representing the standard deviation), show significant results. It is clear that the 
biggest waves for RL in the range where solitary waves form, have amplitudes significantly larger 
than those for higher RL where solitary waves are not observed. This suggests that solitary waves 
may be similar to breaking waves (Kinsman 1965) in that the crest moves too fast for the entire 
disturbance to keep up owing to the retarding effect of the bottom wall. If solitary waves form only 
from precursor waves with sufficiently large a/h ratios, the issue of solitary waves formation then 
becomes one of understanding what conditions promote waves with large a/h ratios. It is clear as 
the layer becomes thicker, the amplitude must get larger to reach the same a/h. Because wave 
amplitudes generally increase with liquid depth, the pertinent question becomes: what other factors 
control the maximum wave amplitude and are preventing the amplitude from reaching a sufficiently 
large value? 

(e) Other results 

Jurman et ai. (1989) show plots (for R L ~ 5 to 10) demonstrating that dominant waves travel 
at velocities close the the predictions of linear stability theory, which predicts a slight decrease in 
wave celerity as RG is increased. However, they did not separately measure speeds for the largest 
amplitude waves which are shown here to have important implications for the formation of solitary 
waves. Figure 8 shows plots of the average wave speed of the largest 6 or 7 waves, the average 
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speed of the dominant waves from the peak in the wave spectrum and the interfacial wave velocity. 
The primary observation to make from figure 8 is that larger amplitude waves travel faster than 
the average for both values of  RL. Consequently, the evolution of a precursor wave into a solitary 
wave is not accompanied by a dramatic increase in speed. 

It could be suspected that the transition to solitary waves is related to changes in the gas flow. 
For example, perhaps gas flow separation causes solitary waves to form. Figure 9 shows the 
properties of some of  the largest individual waves plotted as 2 a/2 vs • +, the wavenumber, at, made 
dimensionless with gas phase turbulence parameters (friction velocity and kinematic viscosity), 
along with the curve from Zilker & Hanratty (1979) which shows the separated and nonseparated 
regions for flow over a solid wavy surface. While the waves studied here are not solid, regular and 
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a / h  ratio? To answer this, it is first observed that the largest amplitude waves, other than solitary 
waves, for either low or high RL, occur intermittently and are not sinuous in shape. Because they 
are comprised of a number of modes, an important issue is the degree of dispersion (variation in 
mode speed with wavenumber), which acts to break up a nonsinuous mode into separate 
components. An estimate of how the wave speed varies for different modes can be obtained from 
a wave equation for liquid layers sheared by a gas flow derived by Jurman & McCready (1989) 
using boundary-layer theory. In the limit of 0tR L = O(1), they show that an equation of the form 

ut + uux + ( u  2 + ~UUx~ + a u u  .... + CoU~ + pUxx + quxx~ + rUxxx~ = 0, [1] 

where u is the surface position, t is time, x is the flow direction, co is the velocity of a wave with 
infinite wavelength and p, q and r are the coefficients characterizing forcing, dispersion and 
dissipation, respectively, is appropriate. The coefficients (, ~ and a are typically small compared 
with unity and, consequently, the nonlinear terms associated with them will not be considered here. 
Note that the nonlinear coefficient for the uu~ term can be absorbed into the variable u. Similar 
simple evolution equations have been shown to approximate the behavior of inviscid water waves 
on shallow water (Korteweg & deVries 1895), waves on a falling film of moderate RL (Alekseenko 
e t  al. 1985) and waves on falling films at very low RL (Chang 1986). The dispersion relation is 
readily obtained for a travelling sinuous mode with frequency co, and infinitesimal amplitude, 
u ~ exp(-icot + iotx),  as 

co = CoOt _ qOt3 + i(pOt2 _ rOt4). [2] 

The real part of co gives the wave speed is 

c = Co - q~2. [3] 

From the imaginary part of co, the temporal growth rate is 

coi= POt 2 _ rOt 4, [4] 

with wave growth expected if coi > 0. Because q is usually < 0, the wave speed increases with Ot as 
does the degree of dispersion between different wavenumbers. It is noted that [1] is probably not 
valid for the higher RL studied here, however a dispersion relation for sheared layers at high RL 
derived by Cohen & Hanratty (1965) (their [39]), gives the same qualitative behavior as [3]. 

The influence that degree of dispersion might have on the formation of large amplitude precursor 
waves can be demonstrated by solving [1] for an initial pulse. It is expected, as happens with other 
similar equations (Lighthill 1978), that dispersion will act to break up any nonsinuous pulse and 
the nonlinear term will act to keep the pulse together. A simplified version of [1], where ~, ~ and 

are zero and the term CoU~ is transformed away with a moving coordinate, will be used. The 
physical picture on which the calculations are based is that large amplitude waves exist independent 
of all other waves so that it is appropriate to solve [1] on an infinite domain. It is suggested that 
while the wave field below the solitary wave transition consists of "periodic" waves, the largest ones 
are independent because they occur irregularly and (from figure 8) travel faster than typical waves. 
A numerical solution can be obtained by using the "hopscotch" method, which is described by 
Greig & Morris (1976). Details of the implementation are given by Peng (1990). Our present interest 
is simply to demonstrate the effect of dispersion, so p and r are chosen as small values to make 
the initial disturbance essentially neutrally stable (actually slightly growing). Figure 10 shows the 
evolution of the top half of a sine wave pulse, chosen because of its similarity to waves in the data, 
over 10 time units for two values of q. The increasing asymmetry is caused by the uux term which 
increases the wave slope on the upstream side and decreases it on the other. For q = 5.0E - 5, the 
pulse is deformed, but remains as a single wave, however for q = 1.0E - 3, the higher dispersion 
has caused the pulse to separate into several modes with lower 0t to the left and higher Ot on the 
right; most of the energy is now in a pulse with a wavelength about 2 twice that of the original. 
Under normal flow conditions, a mode with wavelength twice that of the peak waves is quickly 
dissipated (by both direct viscous dissipation and by energy transfer to higher frequency modes) 
and would not exist. Therefore, the pertinent result of figure 10 is that a pulse breaks up much 
faster if dispersion is higher. This suggests that as dispersion increases, large amplitude waves are 
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Figure 10. Evolution of  a wave pulse with time for low and high dispersion. 

less likely to exist without breaking up. It should also be noted that if the parameters are kept the 
same, and the wavelength increased, a similar degree of breakup will take a longer time. 

The solutions shown in figure 10 should be considered primarily as a descriptive model; wave 
behavior in a real flow is much more complicated. There could be a nonlinear dispersion effect, 
transverse variation could be important or the time variation could require more than first 
derivatives. Nevertheless, differences in the degree of dispersion for low and high RL is a possible 
explanation for why large precursor waves exist at low RL and not at higher RL. At lower RL the 
smaller degree of dispersion may allow waves to grow to a larger amplitude without breaking up. 

Consequently, it is of interest to examine the data for evidence that thicker layers have either 
a higher degree of dispersion, or that ct is smaller for thinner layers. Figure 11 shows a plot of ct 
for the peak in the wave spectra vs Rc for 15 and 20 cP liquids. For the 20 cP liquid, 0t values for 
RL = 10 are well below those for RL = 32 close the solitary wave transition. For the 15 cP fluid, 
the difference is smaller but still may be significant. (It is noted that if only the largest amplitude 
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waves are used, similar behavior is observed.) Lighthill (1978) demonstrates that the parameter 
a22/h 3 is a measure of the relative importance of nonlinearity to dispersion on a wave. Together, 
the data of figures 7 and 11 provide values of this parameter, which are shown in table 1, for 
conditions of solitary wave onset. The values are much larger for the two lower RL, suggesting 
that waves at lower RL are less likely to break up and may grow to larger a/h ratios. One final 
test of the conjectures regarding dispersion is to compare the slope of the speed vs frequency plots 
for the region near the peak of the spectrum. A higher slope corresponds to higher dispersion. The 
values for the slope near the peak are given in table 2. These values are consistent with the notion 
that dispersion is less for thinner layers, but they do not provide conclusive proof. 

From data presented here and previous observations by Hanratty & Hershman (1961), Miya et 
al. (1971), Andreussi et al. (1985) and Bruno & McCready (1988), a consistent picture for the 
formation of both solitary waves and roll waves emerges. If a wave grows to a sufficiently large 
a/h ratio, further application of force (i.e. shear) causes the wave to become asymmetric with a 
steeper front and a more shallow back. Depending upon fluid properties, such as viscosity and 
presumably surface tension, these may either retain a continuous form (solitary waves) or 
break--producing roll waves. For sufficiently thin layers, waves with wavelengths in the range of 
dominant waves are able to achieve the amplitude required for this transition. For larger RL, waves 
with wavelengths close to the spectral peak cannot attain this a/h ratio, perhaps because of the 
effect of dispersion. However, at still higher RL, as evidenced by data of Bruno & McCready (1988) 
which are replotted as figure 12 (note that similarity to figure 5), a much longer wavelength mode 

Table 2. Comparison of  the slope of  the wave speed curve at the dominant 
wave peak for a 20 cP liquid 

Table 1. Values for the parameters which 
control the ratio of  nonlinearity to RG fl~.ak, RL = 8 Slope (cm) f ~ ,  R L -- 32 Slope (cm) 

dispersion 6302 7.8 0.863 7.4 3.1 
a2 ~ 7574 8.5 0.136 9.0 1.1 

#(cP) R L R o h ~ -  9156 8.6 1.2 10.2 1.0 
10,074 7.7 0.91 10.2 1.2 

20 8 12,800 65 11,882 7.0 0.7 11.3 1.4 
20 32 12,800 19 12,777 7.0 0.97 12.5 0.98 
15 10 13,800 52 13,774 7.4 0.25 14.4 0.58 
15 47 13,800 27 14,400 7.0 0.291 14.4 0.49 
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Figure 12. Wave spectra from Bruno & McCready (1988) showing the development below the roll wave 
transition. 

may grow to a sufficient a/h ratio to form roll waves. Note that numerical values for the data of 
figure 12 are in accord with the data of figure 2. From the magnitude of the spectral data (in figure 
12), the average amplitude of the low frequency mode is ~ 0.06 cm, the liquid depth is about 
0.65 cm and the wavelength between 15 and 20 cm. Because this mode has a wavelength that is 
long compared to the film thickness (~ = 0.2), dispersion may again play a minor role. While the 
average a/h ratio does not yet approach the values in figure 7, the parameter a22/h3= 63, is 
comparable to the low R L values of table 1. Furthermore, the largest existing waves are expected 
to have bigger amplitudes. In addition, for RG = 11,550 (not shown in figure 12 because it would 
be way off scale) the data of Bruno & McCready (1988) show a spectral peak at low frequencies 
of about 1 order of magnitude higher than for Rc = 9975. These waves certainly have amplitudes 
which are the same order as the substrate thickness. 

Finally, it is of interest to discuss the present results in terms of annular pipe flow. For horizontal 
or nearly horizontal configurations, annular flow can exist over a wide range of conditions 
which produce different wave structures that will depend upon their location inside the pipe 
(i.e. top, side, bottom). For situation where the liquid depth on the pipe bottom is sufficiently 
large, roll waves will be likely to occur and they will contribute to liquid atomization. As the 
gas velocity is increased, for fixed liquid flow, the fraction of liquid atomized increases with 
the remaining liquid being distributed more evenly around the pipe. As this happens, the 
effective film RL will decrease leading to different wave structures which may range from roll 
waves on the bottom to "slow waves" (Craik 1966) on the top of the pipe. The association of 
atomization with large amplitude waves (Woodmansee & Hanratty 1969; Schadel & Hanratty 1989) 
suggests that the rate of occurrence and amplitude of solitary waves should be the key 
features of the wave field which control atomization. Eventually, additional increases in the 
gas flow lead to no further increases in the entrained fraction (Wallis 1969). When this occurs, 
it is likely that the average liquid thickness and wavelength (which decreases as the liquid 
thickness decreases) are too small, for a given value of the surface tension, to allow the increase 
in interfacial curvature associated with formation of solitary waves. A Weber number of the form 
pu*~2/7, where u* is the friction velocity, 7 is the coeffÉcient of surface tension and 2 is for typical 
existing waves on the very thin film [a form suggested by Andreussi (1980) for the onset of 
atomization], may reach a limiting value too small for additional atomization in a fashion similar 
to what happens at lower RG before the onset of atomization. At very high Rr, an increase in gas 
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shear simply decreases the liquid thickness (and therefore wavelength); a further increase in the rate 
of  atomization does not occur. 

5. C O N C L U S I O N S  

Solitary waves, which appear as a secondary transition of  the stratified gas-liquid interface, 
emanate from existing precursor waves, that have wavelengths close the the spectral peak and 
sufficiently large amplitude/film ratios. This transition process occurs by a change of  shape that 
is similar to wave breaking. Such large waves are favored on thinner layers and do not seem to 
occur on thicker layers where a larger amplitude would be required. The dimensionless wave- 
number of  the largest amplitude waves on thinner layers appears to be smaller than for thicker 
layers and the parameter a22/h 3 is much larger. This suggests that the degree of  dispersion, which 
decreases with decreasing wavenumber and will act to break up nonsinuous waves, may play an 
important role in determining if potential precursor waves can grow to sufficient amplitude to 
evolve into solitary waves. At much higher RL, roll waves form by a similar mechanism except that 
the precursor waves are modes with wavelengths much longer than waves at the peak of the 
spectrum. 
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